78 research outputs found

    Gamma rhythms and beta rhythms have different synchronization properties

    Get PDF
    Experimental and modeling efforts suggest that rhythms in the CA1 region of the hippocampus that are in the beta range (12-29 Hz) have a different dynamical structure than that of gamma (30-70 Hz). We use a simplified model to show that the different rhythms employ different dynamical mechanisms to synchronize, based on different ionic currents. The beta frequency is able to synchronize over long conduction delays (corresponding to signals traveling a significant distance in the brain) that apparently cannot be tolerated by gamma rhythms. The synchronization properties are consistent with data suggesting that gamma rhythms are used for relatively local computations whereas beta rhythms are used for higher level interactions involving more distant structures

    Numerical studies of differential equations related to theoretical financial markets

    Get PDF
    AbstractNumerical computations are performed on a model which has been proposed to describe the characteristic and psychological aspects of financial markets in a pure setting. Overreactions, fluctuations, and convergence to realistic values are observed in these calculations. By varying parameters related to either emotional or rational motivations, one can obtain the spectrum of patterns which range from efficient to chaotic markets

    Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling

    Full text link
    Small lattices of NN nearest neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied, and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time-lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bi-stable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but non-symmetric and phase-shifted. For an intermediate range of time-lags inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.Comment: accepted by Phys.Rev.

    Effective phase description of noise-perturbed and noise-induced oscillations

    Full text link
    An effective description of a general class of stochastic phase oscillators is presented. For this, the effective phase velocity is defined either by invariant probability density or via first passage times. While the first approach exhibits correct frequency and distribution density, the second one yields proper phase resetting curves. Their discrepancy is most pronounced for noise-induced oscillations and is related to non-monotonicity of the phase fluctuations

    On Synchronization in a Lattice Model of Pulse-Coupled Oscillators

    Full text link
    We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of computer simulations we find the relation between the intrinsic dynamics of each member of the population and their mutual interaction that ensures, in a general context, the existence of a fully synchronized regime. This condition turns out to be the same than the obtained for the globally coupled population. When the condition is not completely satisfied we find different spatial structures. This also gives some hints about self-organized criticality.Comment: 4 pages, RevTex, 1 PostScript available upon request, To appear in Phys. Rev. Let

    Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells

    Full text link
    Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I demonstrate a novel generic mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where excitable beta cells, quiescent when isolated, are found to oscillate when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya

    Heteroclinic Ratchets in a System of Four Coupled Oscillators

    Full text link
    We study an unusual but robust phenomenon that appears in an example system of four coupled phase oscillators. We show that the system can have a robust attractor that responds to a specific detuning between certain pairs of the oscillators by a breaking of phase locking for arbitrary positive detunings but not for negative detunings. As the dynamical mechanism behind this is a particular type of heteroclinic network, we call this a 'heteroclinic ratchet' because of its dynamical resemblance to a mechanical ratchet

    Synchronization of coupled limit cycles

    Full text link
    A unified approach for analyzing synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented with a discussion of numerical simulations of a compartmental model of a neuron.Comment: Journal of Nonlinear Science, accepte
    corecore